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Abstract

The global economic system is a highly interlinked network, comprised of heterogeneous in-
dustries in di�erent countries. In such a complex system, a negative shock to the production of
any industrial sector may have two distinct e�ects on the remaining industrial sectors: on the one
hand by increasing/decreasing production it will demand more/less inputs from other sectors (i.e.
“upstream” propagation); on the other hand it will be able to supply more/less output to the sectors
that use its production as input to their own production process (i.e. “downstream” propagation). In
this work, applying network analysis tools we explore the main topological properties of the input-
output linkages among industrial sectors in 19 members of the Economic and Monetary Union.
Among the other results, on the one hand, we �nd that intra-country linkages are generally much
denser than inter-country linkages. This implies that in many cases, the propagation of a shock
to an industry may �rst tend to fall more heavily on other domestic industries. On the other hand,
after uncovering the complexity in the backbone of inter-country linkages, we can identify the main
properties that are potentially important to cross-border spillover risks. In particular, �rst, the ten-
dency to trade with sectors in neighboring countries indicates that geographic linkages could be an
important channel in the transmission of negative shocks from one country to another. Second, a
subset of sectors playing as hubs, which form a densely connected core among themselves and at the
same time bridge sectors in di�erent member countries, could potentially become quick transmitters
of shocks to di�erent economies.

∗The authors gratefully acknowledge the �nancial support of the European Union’s Horizon 2020 grant No.
649186 – Project ISIGrowth, and of the European Union’s Horizon 2020 grant No. 640772 – Project Dol�ns.
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1 Introduction

Following several decades of rapid globalisation, the global economic system has become a highly
interlinked network, comprised of heterogeneous industries in di�erent countries. In such a complex
system, local shocks to single industrial sectors may lead to a large disruption in the aggregate out-
put. In particular, a negative shock to the production of any sector may have two distinct e�ects on
the remaining sectors: on the one hand, by decreasing production, via “upstream” propagation it will
reduce its demand from input-supplying sectors; on the other hand, via “downstream” propagation it
will supply less to customer industries.

It has been widely suggested that input-output linkages play a crucial role in the propagation and
ampli�cation of idiosyncratic shocks throughout an economy. In particular, local shocks to single �rms
or sectors can propagate further through input-output interdependencies, and �nally may lead to a
large aggregate �uctuation with potentially signi�cant implications for macroeconomic volatility and
economic growth (e.g. Horvath (1998), Horvath (2000); Shea (2002); Gabaix (2011); Acemoglu et al.
(2012); Acemoglu et al. (2016); Acemoglu et al. (2017); Jones (2013); Carvalho (2014); Cavallo et al.
(2014); Contreras and Fagiolo (2014); Carvalho et al. (2016)). Therefore, understanding the network

structure of inter-sectoral linkages can better explain the origins of aggregate �uctuations as well as
the potential channels of shock di�usion. Furthermore, it is also useful for policymakers to propose
e�ective policies to mitigate adverse shocks that disrupt the production system.

Whereas much of analysis has been focused on the network of interactions between industrial sec-
tors within a closed economy, less attention has, however, been devoted to the network patterns that
are potentially important in explaining the propagation of shocks across borders. In this report, using
the World Input-Output Tables (WIOT) we analyze topological properties of the inter-country produc-
tion network in 19 members of the Economic and Monetary Union (EMU). The main objectives are:
(i) to uncover the network complexity and patterns of input-output linkages, and (ii) to identify the
important patterns of inter-dependencies between industrial sectors in the EMU, which may create the
potential channels that local shocks can be propagated through the whole network. Overall, the main
�ndings from this report are the following:

• Dense connections among domestic sectors and the tendency to trade with sectors in neighboring
countries imply that geographic linkages could be an important transmission path of negative
shocks.

• Considering only external linkages among sectors in di�erent countries, we �nd that there is
the presence of a hierarchical structure in which a subset of key sectors with many links trade
more intensely among themselves, and the less active peripheral sectors mostly trade with a small
number of these key sectors. Under this structure, local shocks could be quickly propagated to
other parts of the network.

The remainder of this report is structured as follows. In Section 2, we explain the dataset and provide
a general framework for the network representations of the Input-Output Tables in 19 members of the
EMU. Section 3 summarizes the main results. Section 4 provides concluding remarks. At the end of this
report, the Appendix A provides additional details concerning the list of sectors, and the Appendix B
provides analytical details for the measures as well as additional results of di�erent network properties
and centrality.
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2 Data and Network Representations

2.1 Data
We analyze the network structure of linkages between industrial sectors in the 19 members of the

EMU, using the World Input-Output Database (WIOD). Data are available at: http://www.wiod.org/database.
In every year, the data set provides world input-output table (WIOT) in current prices, denoted in mil-
lions of dollars. Each country has 35 of industrial sectors, besides the �nal demand sectors. The table
gives information on the economic transactions that sectors made by buying and selling inputs from
other sectors. More details on how to construct this database can be found in the study of Dietzenbacher
et al. (2013).

Furthermore, in our study, we use the Hypergeometric method to �lter the data (e.g. see Micciche et
al. (2011); Riccaboni et al. (2013)). The method is a stochastic benchmark for normalization purposes.
The network after �ltering will contain only those links that are sensibly high connection with respect
to randomly chosen connections. Practically, for two countries, A and B, let NA be the value of goods
exported by country A and NB the value of goods imported by country B. The total value of traded
goods is Nk and the observed value of goods exported from A to B is NAB . Under the null hypothesis
of random co-occurrence, i.e. customers in country B are indi�erent to the nationality of the exporter,
the probability of observing X US dollars of goods traded is given by the hypergeometric distribution

H(X|Nk, NA, NB) =

(
NA

X

)(
Nk−NA

NB−X

)(
Nk

NB

) , (1)

and we can associate a p-value with the observed NAB as

p(NAB) = 1−
NAB−1∑
X=0

H(X|Nk, NA, NB) . (2)

Note that the described null hypothesis directly takes into account the heterogeneity of countries with
respect to the total value of goods traded. For each pair of countries, we separately evaluate the p-
value and then use a cuto� to select only those links that represent a signi�cant departure from the
hypergeometric benchmark (p < .01). The resulting �ltered matrices can then be dichotomized or
anyway contain only the links that pass the test.

2.2 Network Representations
In the following, we brie�y introduce the mathematical expression of an international production

network comprised of di�erent industries in di�erent countries. Consider an aggregate network of N
countries indexed by α = 1, 2, ..., N . Each country has M industrial sectors indexed by i = 1, 2, ...,M .1
Mathematically, the aggregate production network in of N countries can be represented by a supra-
weighted matrixWa

Wa = {wij}NMxNM =


W11 W12 W13 ... W1N

W21 W22 W23 ... W2N

W31 W32 W33 ... W3N

... ... ... ... ...
WN1 WN2 WN3 ... WNN

 , (3)

1Particularly, in our data set, N=19 and M=35.
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and a supra-adjacency matrix Aa

Aa = {aij}NMxNM =


A11 A12 A13 ... A1N

A21 A22 A23 ... A2N

A31 A32 A33 ... A3N

... ... ... ... ...
AN1 AN2 AN3 ... ANN

 , (4)

where Wαα (or Aαα) with size MxM represents intra-country weighted (or adjacency) block matrix
capturing the interactions among domestic sectors in the country α, and Wαβ (or Aαβ) with size MxM
represents inter-country weighted (adjacency) block matrix capturing the interactions between sectors
in the country α and sectors in the country β. Note that the aggregate weighted matrix,Wa, and each of
its block matrices represent directed networks with possible self-loops, in which each element indicates
an economic �ow from one sector to another sector.

Furthermore, the aggregate weighted matrix Wa can be decomposed into two distinct parts. The
�rst part consists of only domestic inter-sectoral linkages–namely the domestic network, represented
by

Wd =


W11 O O ... O
O W22 O ... O
O O W33 ... O
... ... ... ... ...
O O O ... WNN

 , (5)

and the second part consists of only external inter-sectoral linkages–namely the external network, rep-
resented by

We =


O W12 W13 ... W1N

W21 O W23 ... W2N

W31 W32 O ... W3N

... ... ... ... ...
WN1 WN2 WN3 ... O

 , (6)

where O stands for the matrix of size MxM with all elements are equal to zero. Similarly, in the binary
version, we can also de�ne Ad and Ae respectively as the domestic and external adjacency matrices.

Later we will see that in fact internal linkages among domestic sectors are generally much denser
than the external linkages among sectors in di�erent countries. In such a asymmetric structure, we
focus the network properties of the external linkages (based onAe andWe), which are more potentially
relevant for a better understanding of the international di�usion of shocks. We provide analytical details
for di�erent measures of di�erent network properties and centrality in the Appendix B.

3 Network properties

In this section, we summarize the main topological properties of the input-output (I-O) linkages
among sectors in 19 member countries of the EMU. Additional results of the network properties and
centrality are provided in Appendix B. Note that for the illustration purpose, in what follows we select
the network in the two years 2005 and 2011 as examples.

Our starting point is to have a visualization for the structure of the aggregate network and its de-
composition. In Figure (1) we show the structure of the supra adjacency matrix,Aa, in which each blue
dot represents a directed link between two sectors. The internal linkages in each country are repre-
sented by an associated block matrix located at the diagonal space of Aa. In contrast, each block in the
o�-diagonal space shows the external linkages form sectors in a country to sectors in another country.
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The visualizations of the aggregate network and only the external linkages are respectively shown in
panels (a) and (b) of Figure (2).

Figures (1) and (2) lead us to a �rst glance at the network structure: in general, the network exhibits
a very asymmetric structure between the internal and external linkages. In particular, intra-country
linkages are generally much denser than the inter-country linkages, implying that many sectors in
the members of the EMU are more internally integrated. Further details about the distributions of the
degrees and strengths of sectors are provided in Figures (7), (8), (9), and (10) in the Appendix A, where
we can see that the range of the distributions of degrees and strengths in the aggregate network is
wider than in the external network, especially in the distributions of strengths. It is intuitive when
a sector tend to trade more with other domestic sectors, since it can help to reduce transportation
costs and facilitate information transfer (e.g. Fujita et al. (1999)). Denser and more intensive linkages
among domestic sectors within each member country also reveal that the propagation of a shock to an
industry may �rst tend to fall more heavily on other domestic industries, implying the potential e�ects
of geographic spillovers (e.g. Acemoglu et al. (2017)).

In addition, examining the relationships between the degrees and strengths with the aggregate out-
puts, we �nd that large output sectors are not necessarily more active in trade with sectors in other
member countries (see Figures (11), (12), (13), and (14) in the Appendix B). Similar results are also typi-
cally observed in other network centrality measures such as PageRanks, betweenness (see Figures (15),
(16), (17), and (18) in the Appendix B).

Furthermore, when considering only the external linkages, we do also observe, however, the pres-
ence of key players trading with other sectors in di�erent members of the EMU. These are, for instance,
sectors in several countries such as Germany, France, Italy, Spain, Netherlands, and Belgium. Overall,
we �nd that these key players are not only high degree or strength nodes, but also have a higher level
of network centrality.

The �rst impression of the hierarchical structure of inter-country linkages motivates us to exam-
ine the tendency of interactions of di�erent groups of sectors, for example, interactions among the
highly connected sectors, interactions between highly connected and less active sectors, and interac-
tions among less active sectors. This will help to identify whether there is the presence of potential
(global) propagators in the network.

To do that, in the next steps, �rst, we analyze clusters formed by three sectors in di�erent countries
based on various types of directed clustering coe�cients (e.g. Onnela et al. (2005); Fagiolo (2007)). As
visualized in Figure (19) in the Appendix, each of inward, outward, middleman, and cyclic clusters in
fact captures di�erent direct and indirect exposures among three connected sectors (e.g. Tabak et al.
(2014); Luu et al. (2017)). Second, at the intermediate-scale level (or “meso-scale” level), we investigate
whether there is the presence of the core-periphery structure (e.g. Borgatti and Everett (2000); Rombach
et al. (2014)) of the external network and then measure the averages of links and weights within and
between di�erent groups. In general, under this structure the network is composed by a dense core
with a sparsely connected periphery. In addition, nodes in the core should also be well connected
to peripheral nodes, thus the core also tends to be “central” to the network. Further details for the
visualization as well as the analytical expression of the clustering coe�cients, and the method to detect
the core-periphery structure are provided in the Appendix B.

We show the results for four directed weighted clustering coe�cients in Figure (4). All of these
coe�cients are plotted against the natural independent strengths or the combinations of them.2 We
�nd that in all types of coe�cients, sectors with a higher level of strengths also have a higher level of
weighted clustering coe�cients. This indicates that indicating that sectors with larger total external
trade tend to participate in more intense inter-country trade clusters.

2Notice that in the cases of cyclic and middleman types, the coe�cients are plotted against sin−out =
√
sinsout, since

the clustering coe�cients in these types depends on both incoming and outgoing link weights.
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Regarding the core-periphery structure, we �nd that sectors in some countries such as Germany,
France, Italy, Spain, Netherlands, and Belgium again dominantly appear in the core part.3 Furthermore,
the averages of links and weights within the core part are respectively larger than the averages of links
and weights between the core and the periphery parts. Additionally, the interactions among sectors
within the periphery part are negligible on average.

The results obtained from the analysis of the clustering behaviors as well as the core-periphery
structure imply that some sectors (in a few member countries), which build up a more densely connected
core, are the main actors in the inter-country production chains. The less active peripheral sectors (in
other member countries) mostly trade with these core sectors.

In order to evaluate the overall strength of the input-output tie for every pair of countries, we mea-
sure the inter-country average of connectivity and the inter-country average of intensity. In particular,
the average of connectivity from one country to another country is based on the external (directed)
links between sectors (represented by Ae), and similarly the average of intensity is based on the exter-
nal (directed) weights between sectors (represented byWe). Again, further analytical details for these
measures are provided in the Appendix B.

In Figure (6), we show the color-coded matrices for the averages of connectivity and intensity be-
tween every two countries. Notice that each matrix is not necessarily symmetric, since the input-output
network is directed. Our �ndings suggest that the overall input-output inter-dependencies are highly
heterogeneous (see also Figure (20) in the Appendix B). In particular, while on average sectors in some
countries are more intensely connected, the overall strength of the tie between sectors in other pairs
of countries is very weak. This result is in harmony with what we obtained from the aforementioned
analysis of clustering behaviors and the core-periphery structure, i.e. some sectors in several countries
build up more intensely connected clusters but the rest mildly interact among themselves. In addition,
we also �nd a tendency to connect to sectors in neighboring countries, especially for the case of small
members of the EMU. This indicates that besides the presence of global hubs, geographic linkages could
be also another important channel in the transmission of negative shocks across borders.

3Here we only analyze the core-periphery structure of external links between sectors in di�erent countries. Since the
internal links in the domestic layers are much denser, the aggregate network somewhat exhibits a block structure shown in
Figure (1).
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(b) adjacency matrix in 2011
Figure 1: The adjacency matrix of the aggregate production network in EMU in 2005 (panel (a)) and 2011 (panel
(b)). In each panel, each blue dot represents a directed link between two sectors.
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(a) both domestic and external links

(b) only external links
Figure 2: The visualization of the production network in EMU in 2011. Panel (a) shows the visualization for the
domestic as well as external linkages among sectors. Panel (b) shows the visualization for the partial network
consisting of only external linkages among sectors. Di�erent colors represent sectors in di�erent countries and
the size of each node is proportional to its out-strength. Large sectors in six countries DEU, FRA, EPS, ITA,
NLD, and BEL are located at the center of each graph. They play as hubs bridging industrial sectors in di�erent
members of the EMU.
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(d) outward
Figure 3: Inter-country weighted clustering coe�cients vs. external strengths in 2005.
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(d) outward
Figure 4: Inter-country weighted clustering coe�cients vs. external strengths in 2011.
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Figure 5: Number of sectors in each country belongs to the core in the inter-country linkages in EMU.
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Figure 6: The averages of connectivity and intensity between countries in 2005 and 2011. The average of connec-
tivity between each pair of countries is based on the external (directed) links. The average of intensity between
each pair of countries is based on the external (directed) weights. Note that each matrix is not necessarily sym-
metric. Diagonal elements are equal to zero, since we exclude the domestic linkages in this case. In each panel,
countries are sorted in the descending order of the average of out-going links of each country.

4 Conclusions

In a complex system, shocks propagate by following paths on the network of inter-dependencies
among the system’s units. Network analysis, therefore, provides important information for inferring
shock di�usion in the system.

In this report, we explored the important topological properties of the inter-country production net-
work in 19 members of the EMU. Among other results, we �nd that intra-country linkages are generally
much denser than inter-country linkages. This implies that, the propagation of a shock to an industry
may �rst tend to fall more heavily on other domestic industries. In addition, there is also a tendency
to connect to sectors in neighboring countries, suggesting that geographic spillovers may also play an
important role in explaining how local shocks can be transmitted from one country to another.

Furthermore, our �ndings suggest that some sectors belonging to several countries play as hubs
bridging industrial sectors in di�erent members of the EMU. Additionally, these sectors tend to build-
up densely connected clusters among themselves. The presence of this hierarchical structure creates
potential channels of the quick transmission of shocks to di�erent countries.

We suggest that the role of various network properties in explaining the propagation of shocks under
di�erent di�usion models should be studied further. For example, one interesting question is to examine
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how the network structure among industries a�ects the possible emergence of a large aggregate �uc-
tuation at a national or international level. It is also important to investigate which network properties
are relevant under di�erent propagation mechanisms, i.e. upstream e�ects (to input-supplying indus-
tries), the downstream e�ects (to customer industries), or both of them. We believe that these further
analyses can provide useful information for designing more e�ective strategies to mitigate cascades in
the EMU.
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Appendices
A Lists of sectors and countries

Full Name WIOD Code 3-Letter Code
Agriculture, Hunting, Forestry and Fishing c1 Agr
Mining and Quarrying c2 Min
Food, Beverages and Tobacco c3 Fod
Textiles and Textile Products c4 Tex
Leather, Leather and Footwea c5 Lth
Wood and Products of Wood and Cork c6 Wod
Pulp, Paper, Paper , Printing and Publishing c7 Pup
Coke, Re�ned Petroleum and Nuclear Fuel c8 Cok
Chemicals and Chemical Products c9 Chm
Rubber and Plastics c10 Rub
Other Non-Metallic Mineral c11 Omn
Basic Metals and Fabricated Metal c12 Met
Machinery, Nec c13 Mch
Electrical and Optical Equipment c14 Elc
Transport Equipment c15 Tpt
Manufacturing, Nec; Recycling c16 Mnf
Electricity, Gas and Water Supply c17 Ele
Construction c18 Cst
Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel c19 Sal
Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles c20 Whl
Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods c21 Rtl
Hotels and Restaurants c22 Htl
Inland Transport c23 Ldt
Water Transport c24 Wtt
Air Transport c25 Ait
Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies c26 Otr
Post and Telecommunications c27 Pst
Financial Intermediation c28 Fin
Real Estate Activities c29 Est
Renting of M&Eq and Other Business Activities c30 Obs
Public Admin and Defence; Compulsory Social Security c31 Pub
Education c32 Edu
Health and Social Work c33 Hth
Other Community, Social and Personal Services c34 Ocm
Private Households with Employed Persons c35 Pvt

Table 1: List of WIOD industries.
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B Additional results for network properties

Distributions of degrees and strengths
As we mentioned in the main text, the aggregate network can be decomposed into two separate sub-

networks, i.e. the domestic and the external ones. Therefore, we can de�ne di�erent degree and strength
sequences in the aggregate network (based onAa andWa) and the external network (based onAe and
We). Mathematically, for every node i, its in-degree (kini ) and in-strength (sini ) are respectively de�ned
as the sums of all elements in the column ith of the adjacency and weighted matrices. Similarly, the out-
degree (kouti ) and out-strength (souti ) are respectively de�ned as the sums of all elements in the row ith

of the adjacency and weighted matrices. In the context of the production network under consideration,
the degree and strength sequences represent the distributions of the number of connections and of the
magnitude of trade across sectors. In addition, it should be emphasized that the out-strength of each
sector is smaller than its aggregate output if a part of the output is destined to �nal demand.

The histograms of the degrees and strengths of sectors are shown in Figures (7), (8), (9), and (10).
The ranges of the distributions of degrees and strengths in the aggregate network are wider than those
in the external network. In addition, while the mass of the distributions of degrees and strengths is
concentrated on the left (positive skewness), we observe the presence of larger outlines on the right.
Furthermore, in the binary version, the skewness of the distributions of degrees in external networks is
higher than in the aggregate network. These results evidence the presence of hubs in the input-output
linkages in the EMU.
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Figure 7: Distributions of in-degrees in the aggregate and in the external networks, in 2005 and 2011.
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Figure 8: Distributions of out-degrees in the aggregate and in the external networks, in 2005 and 2011.
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Figure 9: Distributions of in-strengths in the aggregate and in the external networks, in 2005 and 2011.
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Figure 10: Distributions of out-strengths in the aggregate and in the external networks, in 2005 and 2011.

Degrees and strengths vs. outputs
In Figures (11), (12), (13), and (14), we provide the scatter plots showing the relationships between

degrees and strengths with the outputs. We observe that some sectors with a high level of outputs are
associated with a low level of degrees and strengths. This can be interpreted from the perspective of
the concentration of the sectoral inputs and outputs. More speci�cally, if the output of a sector is used
for further productions of many other sectors, its out degree and strength tend to be higher. Similarly,
if a sector use the outputs of many other sectors for its production, its in degree and strength also tend
to be higher. Furthermore, the di�erence between the aggregate strengths and the external strengths
shown in Figures (13) and (14) indicates that some sectors including the large ones are actually more
internally integrated. This again con�rms the asymmetry between the domestic linkages and external
linkages mentioned in the main text.
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Figure 11: In-degrees in the aggregate and in external networks vs. outputs, in 2005 and 2011.
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Figure 12: Out-degrees in the aggregate and in external networks vs. outputs, in 2005 and 2011.
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Figure 13: In-strengths in the aggregate and in external networks vs. outputs, in 2005 and 2011.
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Figure 14: Out-strengths in the aggregate and in external networks vs. outputs, in 2005 and 2011.
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PageRank centrality vs. outputs
Broadly speaking, PageRank algorithm is used to evaluate the relative popularity of a node in a

network: the popularity of a node can be enhanced by the endorsement it receives from the nodes
that are pointing to it (e.g. Page et al. (1998)). From the perspective of shock di�usion, the PageRank
centrality of a node captures the linear backward propagation to its in-coming neighbors. Recently, the
idea of this algorithm has been also applied to analyze the systemic importance of �nancial institutions
(e.g. Battiston et al. (2012); Battiston et al. (2016)).

As we mentioned in the main text, in the literature on directed production networks, there are two
distinct propagation mechanisms, i.e. the upstream propagation via in-coming linkages and the down-
stream propagation via out-going linkages. Therefore, it is relevant to introduce the another variant of
PageRank algorithm that showing the centrality of a node based on the endorsement it gives to other
nodes. To do that, we also measure the forward PageRank of every node that captures the propagation
to its out-going neighbors.

The scatter plots for the relationships between the two di�erent measures of PageRank centrality
(in the weighted version) with the outputs are shown in Figures (15), (16).
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Figure 15: Forward PageRank centrality in the aggregate and in external networks vs. outputs, in 2005 and 2011.
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Figure 16: Backward PageRank centrality in the aggregate and in external networks vs. outputs, in 2005 and 2011.

Betweenness centrality vs. outputs
In production network, there could be key intermediary sectors that are at the same time active

in both supplying and demanding from other sectors. They tend to “lie at the cross roads”, to link
di�erent groups of sectors in the network (for instance, to link highly connected sectors with peripheral
sectors). When considering both upstream as well as downstream propagation, a negative shock to a
key intermediary sector can be propagated to di�erent parts of the network.

The betweenness centrality is a measure of centrality based on the shortest paths (e.g. see Freeman
(1977); Brandes (2001); Borgatti and Everett (2006)). In a network of size n, for every node i, its

betweenness centrality, bt(i), is de�ned as

bt(i) =
1

[(n− 1)(n− 2)]

∑
j,k stjk(i)∑
j,k stjk

(7)

where stjk is the number of the shortest paths going from node j to node k, and stjk(i) is the number of
the shortest paths from node j to node k going through node i.4 A nodes with high value of betweenness
centrality will participate in a large number of shortest paths. In this context, the betweenness centrality
is potentially a proper method to identify key intermediary sectors in the production network.

The relationship between the betweeness centrality (in the weighted version) and the outputs is
illustrated in Figure (17).

4 In this equation, the fraction 1
[(n−1)(n−2)] is used to normalize betweenness centrality to the range [0,1].

22



0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

output

be
tw

ee
ne

ss

(a) in aggregate network, 2005

0 1000 2000 3000 4000 5000 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

output

be
tw

ee
ne

ss

(b) in external network, 2005

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

output

be
tw

ee
ne

ss

(c) in aggregate network, 2011

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

output
be

tw
ee

ne
ss

(d) in external network, 2011
Figure 17: Betweeness centrality in the aggregate and in external networks vs. outputs, in 2005 and 2011.

Spearman’s rank correlation between centrality measures
Since di�erent measures may capture di�erent aspects of network centrality or shock di�usion,

in Figure (18) we show Spearman’s rank correlation between outputs, degrees, strengths, PageRanks,
betweenness in the aggregate and external networks. We can see that not all of them have a high
correlation coe�cient.
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Figure 18: Spearman’s rank correlation between centrality measures in 2005 and 2011. The list of 15 centrality
measures is provided in Table 2.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

kin kout sin sout bt prf prb output kin kout sin sout bt prf prb

Table 2: List of centrality measures in the aggregate network (gray cells), and in the external network (the rest
cells) shown in Figure (18). The two notations prf and prb respectively stand for the forward and backward
PageRanks.

Core-periphery structure in the inter-country linkages
Brie�y, a network with the core-periphery structure is can be partitioned into non-overlapping

subgroups of core and periphery members (e.g. Borgatti and Everett, 2000). To detect this structure,
using the so-called Kernighan-Lin algorithm for graph partitioning we optimize the following core-
structure objective function for the weighted version

QC =
1

vC

( ∑
i,j∈Cc

(wij − γcw̄)−
∑
i,j∈Cp

(wij − γcw̄)
)

(8)

where Cc is the set of all nodes in the core, Cp is the set of all nodes in the periphery, wij is the weight
between nodes i and j, w̄ is the weight average, γc is a resolution parameter controlling the size of the
core, and vC is a normalization constant.

Maximizing the weight of within core-group edges and minimizing the weight of within periphery-
group edges, the measure based on QC synthesizes the formulations of core-periphery (Borgatti and
Everett (2000)) and community (Newman and Girvan (2004)) structures.

Clustering coe�cients

Cyclic clustering
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(a) cycle

Middle clustering
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(d) outward
Figure 19: Di�erent types of clustering in a network.

A clustering coe�cient measures the tendency of two neighbors of a particular node to also be
connected to each other. As visualized in Figure (19), in the directed version of a network, four types
of clustering behaviors, i.e. cycle, middleman, inward, and outward capture di�erent direct as well as
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in-direct interactions among three nodes. Let denote aij and wij respectively as the elements of the
adjacency matrix, Ae, and the weighted matrix,We.

In the weighted version, clustering coe�cients can be formulated in several ways, depending on
how we take into account the roles of the strengths and weights of the nodes in each triangle (see, for
example, Barrat et al. (2004); Onnela et al. (2005); Zhang and Horvath (2005); Holme et al. (2007)). For a
detailed comparison between di�erent methods of calculating the local weighted clustering coe�cients,
we refer readers to Saramaki et al. (2007). Following Onnela et al. (2005), we de�ne the (local) inter-
country weighted clustering coe�cients in the directed version for each node i as

Cin
w,i =

∑
j 6=i
∑

k 6=i,j w
1
3
jkw

1
3
jiw

1
3
ki

(
∑

j 6=i aji)
2 − (

∑
j 6=i a

2
ji)
, (9)

Cout
w,i =

∑
j 6=i
∑

k 6=i,j w
1
3
ikw

1
3
ijw

1
3
jk

(
∑

j 6=i aij)
2 − (

∑
j 6=i a

2
ij)
, (10)

Ccyc
w,i =

∑
j 6=i
∑

k 6=i,j w
1
3
ijw

1
3
jkw

1
3
ki

(
∑

j 6=i aij
∑

j 6=i aji)− (
∑

j 6=i aijaji)
, (11)

Cmid
w,i =

∑
j 6=i
∑

k 6=i,j w
1
3
ikw

1
3
jkw

1
3
ji

(
∑

j 6=i aij
∑

j 6=i aji)− (
∑

j 6=i aijaji)
. (12)

where here three indices i, j, k are associated with sectors in three di�erent countries.
Inter-country connectivity and intensity
Based on the external network (represented byWe andAe), we measure the averages of connectivity

and intensity between every two countries. Without loss of generality, we consider the external linkages
between two countries α and β, represented by a weighted matrix

We
α,β =

[
O Wα,β

Wβ,α O

]
, (13)

and an adjacency matrix

Aeα,β =

[
O Aα,β
Aβ,α O

]
(14)

The average of intensity from country α to country β is de�ned as the average of the normalized
elements of Wα,β .5 In contrast, the average of connectivity from country α to country β is the average
of the elements of Aα,β .

Besides the color coded matrices shown in the main text, Figure (20) provides additional results on
the distributions of the averages of connectivity and intensity.

5Here all elements of Wα,β are normalized by wmax, which is de�ned as the maximum value of all elements ofWe.
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(a) average of connectivity, 2005

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

50

100

150

200

250

300

average of intensity

n
u
m
.
o
b
s

(b) average of intensity, 2005
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(c) average of connectivity, 2011
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(d) average of intensity, 2011
Figure 20: Distributions of the averages of connectivity and intensity, in 2005 and 2011. The average of connec-
tivity between each pair of countries is based on the external (directed) links. The average of intensity between
each pair of countries is based on the external (directed) weights.
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